Advances in radiotherapy techniques for prostate cancer

Dr Susie Masson
Senior Registrar and Research Fellow
University Hospitals Bristol

On behalf of Dr Amit Bahl
Consultant Clinical Oncologist and Head of Radiotherapy
University Hospitals Bristol
Radiotherapy and Prostate Cancer

• Radical treatment with intention of cure or long term control – treatment given to the prostate gland and immediate surrounding areas
 ▫ May be given as external beam radiotherapy or brachytherapy (internal radiotherapy)
 ▫ Large doses, long courses (weeks)

• Palliative treatment with intention of helping control symptoms
 ▫ Usually external beam radiotherapy
 ▫ Lower doses, shorter courses (days)
External beam radiotherapy—what we used to do

- Rectangular fields
 - No MLC
 - High rectal dose
External beam radiotherapy-what we do now

- 3D Conformal radiotherapy
External beam radiotherapy-what we do now

• 3D Conformal radiotherapy
 ▫ MLC
 ▫ Reduced rectal dose
Evidence for conformal radiotherapy

- Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial
 David P Dearnaley, Vincent S Khoo, Andrew R Norman, Lesley Mey, Alan Nahum, Diana Tait, John Yarnold, Alan Horwich

Lancet 1999; 353:267-272
Evidence for conformal radiotherapy

- 225 patients
- 64Gy 32#
- Conventional vs conformal RT
- Radiation proctitis
 - 37% vs 56% RTOG grade 1
 - 5% vs 15% RTOG grade 2
- No difference in bladder function
Advanced radiotherapy techniques

- Intensity modulated radiotherapy (IMRT)
- Image guided radiotherapy (IGRT)
- Brachytherapy
 - LDR
 - HDR
- Fiducial markers
- (Proton therapy)
Intensity modulated radiotherapy (IMRT)

- What can IMRT do?
 - Produce concave treatment volumes
 - Closely conform to PTVs
 - Reduce normal tissue doses
 - Allow dose escalation
Intensity modulated radiotherapy (IMRT)

Conventional 3 field plan

95% isodose
Intensity modulated radiotherapy (IMRT)
Intensity modulated radiotherapy (IMRT)

- Disadvantages
 - dose heterogeneity within the target (many beams)
 - inefficiency of beam delivery and beam leakage that may result in a total body dose that is significantly higher
 - inefficiency of beam delivery and beam leakage that may result in a total body dose that is significantly higher
 - time-consuming and expensive
Intensity modulated radiotherapy (IMRT)

- Delivery of IMRT on a conventional LINAC
 - Step-and-shoot (segmented delivery)
 - Dynamic delivery
IMRT-the evidence

• Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer.

Radiother Oncol. 2000;55:241-249
IMRT-the evidence

• compared the acute and late toxicities of patients with T1c-T3 prostate cancer receiving high-dose (81 Gy) 3D-CRT (n=61) and IMRT (n=171)
• IMRT significantly reduced the incidence of acute mild to moderate rectal toxicity compared with 3D-CCRT
• fewer cases of moderately severe late rectal toxicity with IMRT than 3D-CRT
IMRT-the evidence

- First results of a phase III multicenter randomized controlled trial of intensity modulated (IMRT) versus conventional radiotherapy (RT) in head and neck cancer (PARSPORT: ISRCTN48243537; CRUK/03/005)

C Nutting

J Clin Oncol 27:18s, 2009 (suppl; abstr LBA6006)
IMRT-the evidence

- 94 patients (47 RT; 47 IMRT)
- Twelve month LENT-SOMA ≥G2 xerostomia scores were observed in 74% (25/34) of RT and 40% (15/38) of IMRT patients ($p=0.005$)
- Conclusions: Sparing the salivary glands through use of IMRT significantly reduces the incidence of xerostomia in patients with pharyngeal tumours
Image-Guided Radiotherapy (IGRT)

- Combines imaging and treatment capabilities on the same machine
- Tumour position can move during treatment
- Tumour movement can be tracked during treatment
- Fine adjustments can be made to treatment plan
Image-Guided Radiotherapy (IGRT)

• What can IGRT do?
 ▫ Closely conform to target volume
 ▫ Reduce normal tissue doses
 ▫ Allow dose escalation
Image-Guided Radiotherapy (IGRT)

- Disadvantages
 - Cost
 - Higher exposure to radiation
 - Less patients per hour per machine
Brachytherapy

• Low dose rate brachytherapy
 ▫ Permanent radioactive seed implant

• High dose rate brachytherapy
 ▫ Afterloading
Low dose rate (LDR) brachytherapy

- Permanent implant of 125I seeds within the prostate
- Mean energy 25KeV, half life 59.4 days
- Accuracy ensured by using TRUS
- Short range of radiation allows high doses to prostate with sparing of normal tissue (minimum 145Gy to prostate with 2-3mm margin)
Low dose rate (LDR) brachytherapy

- What can LDR brachytherapy do?
 - Closely conform dose to tumour volume
 - Reduce normal tissue doses
 - Allow dose escalation
 - Can be done outside radiotherapy centre
Low dose rate (LDR) brachytherapy

• Disadvantages
 ▫ No way to vary dosing once seeds implanted
 ▫ Early stage, low risk disease only
 ▫ Critics say all these patients could be managed with active surveillance
LDR brachytherapy-the evidence

- Biochemical disease-free survival following 125I prostate implantation.
 Beyer DC, Priestley JB

LDR brachytherapy - the evidence

- 489 patients
- Biochemical disease-free survival at 5 years was
 - 94% for T1
 - 70% for unilateral T2
 - 34% for T2c tumours
High dose rate (HDR) brachytherapy

- Used as a boost to external beam RT
- Catheters placed in situ and post implant dosimetry undertaken
- Treatment delivery follows afterwards in the HDR afterloading room with Ir\textsubscript{192}
High dose rate (HDR) brachytherapy

- What can HDR brachytherapy do?
 - Closely conform dose to tumour volume
 - Reduce normal tissue doses
 - Allow dose escalation
 - Treat more advanced tumours than LDR brachytherapy
Fiducial markers

- Fiducial markers may be inserted to aid localisation of the prostate
 - Gold grains/visicoil
 - Usually 3 markers inserted
 - Insertion via TRUS
- Used in association with IGRT or IMRT
Fiducial markers

- What can fiducial markers do?
 - Better localisation of target tissue
 - Allow delivery of closely conformal RT to target volume
 - Reduce normal tissue doses
 - Allow dose escalation
Conclusion

• Options for advanced RT techniques are:
 ▫ IMRT
 ▫ IGRT
 ▫ Brachytherapy
 ▫ Fiducial markers

• All are means of:
 ▫ Conforming treatment more closely to target volume
 ▫ Escalating doses to tumour
 ▫ Sparing normal tissue toxicity
Conclusion

- Aims of advanced radiotherapy techniques have been shown to improve conformality and reduce normal tissue doses.

- Too early to demonstrate improved outcomes for most techniques at present.