Bioinformatics-Guided Biomarker Discovery Program

K. Stephen Suh

The Tumor Bank and Genomics Program

The Cancer Center

Hackensack University Medical Center

March 18, 2008

^{*} We did not receive anything with monetary values from BioFortis and BioMax

Demands for basic, translational and clinical sciences relevant to biomarker market will dramatically increase in future

Source: BCC Research, 2007

Biomarkers: The Expanding Global Market (BIO61A)

Biomarker discovery (target identification and validation) is associated with high cost and time

Source: Life Science Insights, Ernst & Young, Tufts CSDD and Boston Consulting Group, July 2004.

Two phases of biomarker discovery involve procurement of clinical samples and –omics research

(1) "Procurement"

(2) "-omics Research"

A small number of tumor biomarkers overlap between laboratories, institutes and continents

Multiple departments are involved in the Tumor Bank tissue procurement workflow

DEPARTMENTS

- A. Outpatient clinic
- B. Outpatient laboratory
- C. Couriers
- D. Surgical procedure room
- E. Department of pathology
- F. Information technology
- G. Tissue repository and Research

PEOPLE

- Research, Education and Charge Nurses
- Schedule, Research and Data Coordinators
- Receptionist and Assistants ..etc

PROBLEMS

- 1. Sample loss (-\$300 to -\$500) due to lack of communication & information
- 2. Structural integrity and quality of biomaterials compromised due to lack of coordination
- 3. Disruption of routine workflows in Operating Rooms, Special Procedures and Pathology due to unexpected arrival of patients or samples without consent forms
- 4. IT- and Tele-communication not frequently accessible due to high patient volume and short staff

Solution

Translational bioinformatics is used to help the workflow associated with procurement of clinical samples

A combination of patient education and consent procedures are accomplished in digitized formats

Research nurses and coordinators initiate bioinformaticsguided tissue procurement process (*Lymphoma Division)

Automated emails and paging procedures alert members of the tissue procurement "TEAM" in real-time

All digitized data associated with clinical samples are stored and documented

(Biospecimen management and tracking)

Summary

- Translational Bioinformatics to guide the procurement process for clinical samples
- 1) Real time and Web-based information management system
- 2) Integrating clinical and molecular data for:
 - a) Translational Clinical Research
 - b) Collaborative Research Studies
 - c) Biospecimen Management
 - d) Biomarker Discovery
 - e) Personalized Medicine

Knowledge Management Environment

BioXMTM
Knowledge
Environment

BioRSTM
Data
Integration

BioLTTM
Linguistics
System

Configured to assemble your information objects, find, show, document relationships, mange projects, collaborate.

3rd Tier – Knowledge

2nd Tier – Information

Middle layer configured to access curated information provided by commercial and internal analysis tools.

Internal & External Data Sources

- 70+ Public Databases i.e.. PDQ, HUGO, GenBank, EMBL, Omim, MEDLINE, RefSeq, Taxonomy, UniGene, Swissprot, etc.
- Other Analysis sub-systems commercial & in-house developed systems and databases.

1st Tier – Data

Launch complex queries across internal and external databases and text sources.

Scientists and clinicians must create a knowledge management system to control explosions of data and information

- (1) Compilation of databases from both public and private sectors in one knowledge management system will be the most powerful tool for scientists and clinicians in the future.
 - (i) DNA, Protein, Metabolite, Mutations, Toxicology, Compounds, References, Clinical Trials, Patents ..etc
 - (ii) -omics Experimental databases (e.g. microarray)
 - (iii) Institutional databases (e.g. Tumor Registry- patient outcome)
 - (iv) Laboratory database (e.g. LabMatrix)

(2) Thus, institutions that construct informatics infrastructure that is based on knowledge-management in the form of a neural network will become future leaders in health care.

Visualize Knowledge

- Integrates information from various sources to find and show complex relationships.
- Supports iterative process of developing a hypothesis, integrating elements, viewing results, understanding how and why parts fit together and documenting findings.
- Capture, preserve, share and institutionalize information to build knowledge across organizations.
- Software developed for nontechnical researchers and MDs.
 No technical skills required.
- Flexible, configurarable to support new research as biomedical science evolves.
- Scalable across organizations to support collaboration.

30 lymphoma biomarker-genes

1. Spheroid- 3D cell culture technology

- Construction of tumor spheroids by mixing with primary normal human fibroblasts to mimic human tumors *in vitro* (e.g. library of tumor cell lines)
- High throughput *in vitro* preclinical testing of drugs currently used in clinics (e.g. HUMC)
- Generation of xenografts by embedding spheroids for *in vivo* model

2. Impedance technology

• Signature database for cell culture (e.g. MCL, Ovarian, Prostate and etc.), clinical samples (serum, bodily fluids and tissue lysates)

3. Paramagnetic particle technology

Rapid Magneto-Immunoassay for PSA/ prostate cancer project

All data will be integrated to knowledge management system